Comparison of inhibition potentials of drugs against zidovudine glucuronidation in rat hepatocytes and liver microsomes.

نویسندگان

  • Yuji Mano
  • Takashi Usui
  • Hidetaka Kamimura
چکیده

Hepatocytes and liver microsomes are considered to be useful for investigating drug metabolism catalyzed mainly via glucuronidation. However, there have been few reports comparing the glucuronidation inhibition potentials of drug in hepatocytes to those in liver microsomes. 3'-Azido-3'-deoxythymidine (AZT, zidovudine) glucuronidation (AZTG) is the major metabolic pathway for AZT. In this study, the inhibition potentials of drugs against UDP-glucuronosyltransferase (UGT)-catalyzed AZTG in the hepatocytes and liver microsomes of rats are compared. The AZTG inhibition potentials of diclofenac, diflunisal, fluconazole, indomethacin, ketoprofen, mefenamic acid, naproxen, niflumic acid, and valproic acid in liver microsomes and hepatocytes were investigated using liquid chromatography with tandem mass spectrometry. Diflunisal (inhibition type: noncompetitive) inhibited AZTG most potently in rat liver microsomes (RLMs) with an IC(50) value of 34 microM. The IC(50) values of diclofenac, fluconazole, indomethacin, ketoprofen, mefenamic acid, naproxen, niflumic acid, and valproic acid against AZTG in RLMs ranged from 34 to 1791 microM. Diclofenac, diflunisal, indomethacin, ketoprofen, naproxen, and valproic acid inhibited AZTG in hepatocytes with IC(50) values of 58, 37, 88, 361, 486, and 281 microM, respectively. These values were similar to those obtained in RLMs. In conclusion, the AZT glucuronidation inhibition potentials of drugs in the hepatocytes and liver microsomes of rats were found to be similar, and liver microsomes can be useful for evaluating UGT isozyme inhibition potentials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered AZT (3'-azido-3'-deoxythymidine) glucuronidation kinetics in liver microsomes as an explanation for underprediction of in vivo clearance: comparison to hepatocytes and effect of incubation environment.

Human liver microsomes are a reagent commonly used to predict human hepatic clearance of new chemical entities via phase 1 metabolism. Another common metabolic pathway, glucuronidation, can also be observed in human liver microsomes, although the scalability of this process has not been validated. In fact, several groups have demonstrated that clearance estimated from liver microsomes with UDP-...

متن کامل

Inhibition of morphine glucuronidation in the liver microsomes of rats and humans by monoterpenoid alcohols.

Morphine is an important drug used to alleviate moderate to severe pain. This opiate is mainly metabolized by glucuronidation to a non-analgesic metabolite, morphine-3-glucuronide (M-3-G) and an active metabolite morphine-6-glucuronide (M-6-G). To understand the modulation of morphine glucuronidation activity by environmental factors, the effect of endogenous and food-derived compounds on morph...

متن کامل

Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers.

Pharmacokinetic studies demonstrated that the decrease in drug biotransformation in hepatic failure depends on the metabolic pathways involved. To test whether glucuronidation reactions supported by UDP-glucuronosyltransferases are differentially affected in such conditions, we investigated the in vitro glucuronidation of four selected drugs and xenobiotics (zidovudine, oxazepam, lamotrigine, a...

متن کامل

In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance.

The glucuronidation of a number of commonly used hepatic uridine diphosphate glucuronosyltransferase drug substrates has been studied in human tissue microsomes. Prediction of in vivo hepatic drug glucuronidation from liver microsomal data yielded a consistent 10-fold under-prediction. Consideration of protein binding was observed to be pivotal when predicting in vivo glucuronidation for acid s...

متن کامل

Carrier-mediated transport of uridine diphosphoglucuronic acid across the endoplasmic reticulum membrane is a prerequisite for UDP-glucuronosyltransferase activity in rat liver.

UDP-glucuronosyltransferases (EC 2.4.1.17) is an isoenzyme family located primarily in the hepatic endoplasmic reticulum (ER) that displays latency of activity both in vitro and in vivo, as assessed respectively in microsomes and in isolated liver. The postulated luminal location of the active site of UDP-glucuronosyltransferases (UGTs) creates a permeability barrier to aglycone and UDP-GlcA ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2007